Journal of Organometallic Chemistry, 228 (1982) C19–C20 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

Preliminary communication

DITHIOCARBENE COMPLEXES DERIVED FROM CS₂-BRIDGED DINUCLEAR COMPLEXES

LUIGI BUSETTO, ANTONIO PALAZZI and MAGDA MONARI Facoltà di Chimica Industriale, Viale Risorgimento 4, 40136 - Bologna (Italy) (Received December 1st, 1981)

Summary

Stable dithiocarbene complexes $\{Cp(CO)_2 FeC(SCH_3)[SML_n]\}^+$ (ML_n = Re(CO)₅, Fe(CO)₂Cp) are formed when monodentate ferrodithiocarboxylate—metal complexes Cp(CO)₂FeC(=S)[SM'L_n] (Cp = η^5 -C₅H₅) are treated with CH₃SO₃CF₃.

Although transition-metal complexes containing the dithiocarbene ligand $[C(SR)_2]$ have been isolated [1-5], it was only recently [6] that a neutral carbene complex, $W(CO)_5 \{C(SCH_3)[SFe(CO)_2Cp]\}$ was obtained in which the dithiocarbene unit is bridging between two metal atoms; this complex was made from $[W(CO)_5C(=S)(SCH_3)]^-$ and $[CpFe(CO)_2(THF)]^+$. Efforts to prepare other examples of such complexes both from different metal cations or from Group 4A metal halides proved unsuccessful [6].

One route used to prepare dithiocarbene complexes involved the alkylation of the thione sulfur atom in dithioesters complexes $L_nMC(=S)(SR)$ by $CH_3SO_3CF_3$, and it seemed likely that unidentate CS_2 -bridged dinuclear complexes might act similarly. We now describe such reactions, which provide cationic metallodithiocarbene—metal complexes { $Cp(CO)_2FeC(SCH_3)$ -[SML_n]}⁺ [$ML_n = Re(CO)_5$, $Fe(CO)_2Cp$] starting from the iron dithioesters $Cp(CO)_2FeC(=S)[SML_n]$.

We recently found [7] that treatment of a tetrahydrofuran solution of the carbon disulfide adduct of the dicarbonyl(cyclopentadienyl) ferrate $[Cp(CO)_2 FeCS_2]^-$, with $Re(CO)_5 Br$ at $-78^{\circ}C$ for 40 min gives the dithioester derivative $Cp(CO)_2 FeC(=S)[SRe(CO)_5]$ (I), which is contaminated by small variable amounts of the chelato complex $Cp(CO)_2 FeCS_2 Re(CO)_4$ (II) [8]. Complex I is readily methylated at room temperature in $CH_2 Cl_2$ with methyltrifluoromethane sulfonate to give the dithiocarbene cation $\{Cp(CO)_2 FeC(SCH_3)[SRe(CO)_5]\}^+$, which after anion exchanges gives the

0022-328X/82/0000-0000/\$02.75

© 1982 Elsevier Sequoia S.A.

yellow PF_6^{-} salt III in an almost quantitative yield ($\nu(CO)$ (CH_2Cl_2): 2142m, 2085w, 2040 vs, 2010s cm⁻¹; ¹H NMR (acetone- d_6) τ 6.51 (CH₃), 4.43 (C₅H₅)). There is no splitting of these ¹H singlets upon cooling an acetone- d_{6} solution of III to -60° C, indicating that only one isomer is present.

Such dithiocarbene formation could also be expected from the CS_2 -bridged complex $[CpFe(CO)_2]_2CS_2$, in which the ferrodithiocarboxylate acts as a monohapto-S ligand [9]. Its reaction in CH_2Cl_2 with $CH_3SO_3CF_3$ does indeed, immediately produce IV, which was isolated as the PF_6 salt (60%). (ν (CO) (CH_2Cl_2) : 2047s, 2041s, 2003s cm⁻¹; ¹H NMR (acetone- d_6): τ 6.65(CH₃), 4.49 (C₅H₅), 4.57 (C₅H₅); ¹³C NMR (acetone- d_6): ppm 315.4 (carbene C), 206.3 (CO), 89.0 (C_5H_5), 88.3 (C_5H_5), 29.3 (SCH₃)). Analytical data and conductivity measurements support the proposed structures for both III and IV dithiocarbene complexes.

References

- 1 E.J. Lindner, J. Organometal. Chem., 141 (1975) 621,
- 2 M.F. Lappert and D.B. Shaw, J. Chem. Soc. Chem. Commun., (1978) 146.
- 3 K.R. Grundy, R.O. Harris and W.R.J. Roper, J. Organometal. Chem., 90 (1975) 634.
- 4 E.D. Dobrzynsky and R.J. Angelici, Inorg. Chem., 14 (1975) 1513.
 5 F.B. Mc Cornick and R.J. Angelici, Inorg. Chem., 18 (1979) 1231; Inorg. Chem., 20 (1981) 1111 and 1118.
- 6 R.A. Pickering and R.J. Angelici, Inorg. Chem., 20 (1981) 2977.
- 7 L. Busetto, A. Palazzi and M. Monari, submitted for publication.
 8 II does not react under the same experimental conditions with CH₃SO₃CF₃.
- 9 J.E. Ellis, R.W. Fennel and E.A. Flom, Inorg. Chem., 15 (1976) 2031.